Atom migration-trapping toward single-atom catalysts for energy electrocatalysis
نویسندگان
چکیده
منابع مشابه
Thermally stable single-atom platinum-on-ceria catalysts via atom trapping.
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having simila...
متن کاملGraphyne-supported single Fe atom catalysts for CO oxidation.
Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good ...
متن کاملToward Single Atom Chains with Exfoliated Tellurium
We demonstrate that the atom chain structure of Te allows it to be exfoliated as ultra-thin flakes and nanowires. Atomic force microscopy of exfoliated Te shows that thicknesses of 1-2 nm and widths below 100 nm can be exfoliated with this method. The Raman modes of exfoliated Te match those of bulk Te, with a slight shift (4 cm-1) due to a hardening of the A1 and E modes. Polarized Raman spect...
متن کاملRobust Digital Holography For Ultracold Atom Trapping
We have formulated and experimentally demonstrated an improved algorithm for design of arbitrary two-dimensional holographic traps for ultracold atoms. Our method builds on the best previously available algorithm, MRAF, and improves on it in two ways. First, it allows for creation of holographic atom traps with a well defined background potential. Second, we experimentally show that for creatin...
متن کاملStructure of adsorbed organometallic rhodium: model single atom catalysts.
We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)2Cl] molecule adsorbed on the TiO2(110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Today Energy
سال: 2021
ISSN: 2468-6069
DOI: 10.1016/j.mtener.2020.100586